Entradas

Mostrando entradas de diciembre, 2020

Distribución Simétrica.

Imagen
  Distribución Simétrica. En una distribución simétrica el valor de la media aritmética, la mediana y la moda coinciden. MEDIDAS DE DESVIACIÓN O VARIABILIDAD Varianza S'2 Es la medida de las desviaciones al cuadrado, calculada usando n o n-1 como divisor. DESVIACIÓN TÍPICA O ESTÁNDAR S  Es simplemente la raíz cuadrada de la varianza. La variancia y la desviación miden la dispersión promedio alrededor de la media. DESVIACIÓN MEDIA Se define como la media de las diferencias en valor absoluto de los valores de la variable a la media (D:M); es decir, que se define como desvío, que es la diferencia que se observa entre la variable y la media aritmética. Fórmulas:

Medidas de Tendencia Central para Datos No Agrupados.

Imagen
  Medidas de Tendencia Central para Datos No Agrupados. Estas medidas son valores que se interpretan fácilmente y sirven para realizar un análisis más profundo y detallado que el obtenido por los resúmenes tabulares y gráficos. Se iniciará con las llamadas  medidas de localización , es decir, medidas que buscan cierto lugar del conjunto de datos; cuando el lugar buscado es el centro de los datos les llamamos  medidas de tendencia  central  de las cuales considerarán: la media, la moda y la mediana. Media Aritmética de Datos No Agrupados. La media aritmética es el valor que se obtiene al sumar todos los datos que tenemos y dividir el resultado entre el número total de estos datos. También llamada "promedio" o simplemente "media" se la utiliza para calcular un valor representativo de los valores que se están promediando. Moda de Datos No Agrupados. La moda el valor que se repite con mayor número de veces, además se aplica para datos agrupados y datos no agrupados...

La Representación Gráfica y Análisis de los Datos a Través de Histogramas y Polígonos de Frecuencias Acumuladas.

Imagen
  La representación gráfica y análisis de los datos a través de histogramas y polígonos de frecuencias acumuladas. Hay un dicho que dice "una imagen dice más que mil palabras" por eso ahora te mostraremos como diseñar gráficas a partir de una distribución de frecuencias para que la presentación de la información sea más agradables pero sobre todo aún más fácil de entender. Una gráfica es el espejo donde se refleja una parte de la información que contiene la distribución de frecuencias. Hay varios tipos de gráficas, cada una relaciona la información que contiene la distribución de frecuencias, las gráficas de barras, histogramas, polígonos de frecuencias, ojivas y gráficas de pastel son algunas.